Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(17): 9984-9993, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635942

RESUMO

Squalene is a high-value antioxidant with many commercial applications. The use of microbial cell factories to produce squalene as an alternative to plant and animal extracts could meet increasing market demand. Yarrowia lipolytica is an excellent host for squalene production due to its high levels of acetyl-CoA and a hydrophobic environment. However, the need for precise and complicated gene editing has hindered the industrialization of this strain. Herein, the rapid construction of a strain with high squalene production was achieved by enhancing the homologous recombination efficiency in Y. lipolytica. First, remodeling of the homologous recombination efficiency resulted in a 10-fold increase in the homologous recombination rate. Next, the whole mevalonate pathway was integrated into the chromosome to enhance squalene production. Then, a higher level of squalene accumulation was achieved by increasing the level of acetyl coenzyme A and regulating the downstream steroid synthesis pathway. Finally, the squalene production reached 35 g/L after optimizing the fermentation conditions and performing a fed-batch culture in a 5 L jar fermenter. This is the highest squalene production ever reported to date by de novo biosynthesis without adding any inhibitors, paving a new path toward the industrial production of squalene and its downstream products.


Assuntos
Recombinação Homóloga , Engenharia Metabólica , Esqualeno , Yarrowia , Yarrowia/metabolismo , Yarrowia/genética , Esqualeno/metabolismo , Fermentação , Ácido Mevalônico/metabolismo
2.
Zhongguo Gu Shang ; 36(11): 1046-51, 2023 Nov 25.
Artigo em Chinês | MEDLINE | ID: mdl-38012873

RESUMO

OBJECTIVE: To study the effect of ultrasound-guided fascia iliaca compartment block on perioperative analgesia and postoperative complications in geriatric patients with hip fractures. METHODS: A total of 127 elderly patients undergoing hip fracture surgery from January 2021 to September 2021 were randomized to receive ultrasound-guided continuous fascia iliaca compartment block(group F) either intravenous analgesia control group(group C). There were 62 cases in group F, including 19 males and 43 females with an average age of (82.4±7.2) years old ranging from 66 to 95 years old, involving 25 femoral neck fractures and 37 femoral intertrochanteric fractures. There were 65 cases in control group, including 18 males and 47 females, with an average age of (81.4±8.7) years old ranging from 65 to 94 years old, involving 29 femoral neck fractures and 36 femoral intertrochanteric fractures. The visual analogue scale(VAS), minimental state examination (MMSE), observer's assessment of alertness/sedation(OAA/S) scale, modified Bromage score, postoperative complications and general conditions during hospitalization in two groups were observed. RESULTS: The resting and exercise VAS at 30 min after block, anesthesia placement and 6, 24 and 48 h after surgery were lower than those in group C(P<0.05). In group F, MMSE scores at 12 h before surgery, and 1, 3 d after surgery and OAA/S scores at 3 d after surgery were higher than those in group C(P<0.05). The incidence of adverse effects and the number requiring additional analgesia were lower than those in group C(P<0.05). Group F had better perioperative analgesia satisfaction and hospital stay than group C(P<0.05). But there was no significant difference regarding Bromage score and 30-day mortality between two group(P>0.05). CONCLUSION: Ultrasound-guided continuous fascia iliacus space block was safe and effective for elderly patients with hip fracture, and could significantly reduce perioperative pain, improve postoperative cognitive function, and reduce postoperative complications, thereby shortening hospital stay and improving the quality of life during hospitalization.


Assuntos
Fraturas do Fêmur , Fraturas do Colo Femoral , Fraturas do Quadril , Bloqueio Nervoso , Masculino , Feminino , Humanos , Idoso , Idoso de 80 Anos ou mais , Manejo da Dor , Qualidade de Vida , Fraturas do Quadril/cirurgia , Dor/cirurgia , Fraturas do Colo Femoral/cirurgia , Fraturas do Fêmur/cirurgia , Ultrassonografia de Intervenção , Complicações Pós-Operatórias/cirurgia , Fáscia , Dor Pós-Operatória
3.
J Agric Food Chem ; 71(49): 19672-19681, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38016669

RESUMO

Enzymatic synthesis of ursodeoxycholic acid (UDCA) catalyzed by an NADH-dependent 7ß-hydroxysteroid dehydrogenase (7ß-HSDH) is more economic compared with an NADPH-dependent 7ß-HSDH when considering the much higher cost of NADP+/NADPH than that of NAD+/NADH. However, the poor catalytic performance of NADH-dependent 7ß-HSDH significantly limits its practical applications. Herein, machine-learning-guided protein engineering was performed on an NADH-dependent Rt7ß-HSDHM0 from Ruminococcus torques. We combined random forest, Gaussian Naïve Bayes classifier, and Gaussian process regression with limited experimental data, resulting in the best variant Rt7ß-HSDHM3 (R40I/R41K/F94Y/S196A/Y253F) with improvements in specific activity and half-life (40 °C) by 4.1-fold and 8.3-fold, respectively. The preparative biotransformation using a "two stage in one pot" sequential process coupled with Rt7ß-HSDHM3 exhibited a space-time yield (STY) of 192 g L-1 d-1, which is so far the highest productivity for the biosynthesis of UDCA from chenodeoxycholic acid (CDCA) with NAD+ as a cofactor. More importantly, the cost of raw materials for the enzymatic production of UDCA employing Rt7ß-HSDHM3 decreased by 22% in contrast to that of Rt7ß-HSDHM0, indicating the tremendous potential of the variant Rt7ß-HSDHM3 for more efficient and economic production of UDCA.


Assuntos
NAD , Ácido Ursodesoxicólico , Ácido Ursodesoxicólico/metabolismo , NADP/metabolismo , Teorema de Bayes , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo
4.
Appl Microbiol Biotechnol ; 107(23): 7105-7117, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37736790

RESUMO

Paclitaxel (Taxol®) is the most popular anticancer diterpenoid predominantly present in Taxus. The core skeleton of paclitaxel is highly modified, but researches on the cytochrome P450s involved in post-modification process remain exceedingly limited. Herein, the taxane-10ß-hydroxylase (T10ßH) from Taxus cuspidata, which is the third post-modification enzyme that catalyzes the conversion of taxadiene-5α-yl-acetate (T5OAc) to taxadiene-5α-yl-acetoxy-10ß-ol (T10OH), was investigated in Escherichia coli by combining computation-assisted protein engineering and metabolic engineering. The variant of T10ßH, M3 (I75F/L226K/S345V), exhibited a remarkable 9.5-fold increase in protein expression, accompanied by respective 1.3-fold and 2.1-fold improvements in turnover frequency (TOF) and total turnover number (TTN). Upon integration into the engineered strain, the variant M3 resulted in a substantial enhancement in T10OH production from 0.97 to 2.23 mg/L. Ultimately, the titer of T10OH reached 3.89 mg/L by fed-batch culture in a 5-L bioreactor, representing the highest level reported so far for the microbial de novo synthesis of this key paclitaxel intermediate. This study can serve as a valuable reference for further investigation of other P450s associated with the artificial biosynthesis of paclitaxel and other terpenoids. KEY POINTS: • The T10ßH from T. cuspidata was expressed and engineered in E. coli unprecedentedly. • The expression and activity of T10ßH were improved through protein engineering. • De novo biosynthesis of T10OH was achieved in E. coli with a titer of 3.89 mg/L.


Assuntos
Paclitaxel , Taxus , Escherichia coli/genética , Escherichia coli/metabolismo , Taxoides/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Taxus/genética
5.
Synth Syst Biotechnol ; 8(2): 331-338, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37215159

RESUMO

Taxadiene is an important precursor for the biosynthesis of highly effective anticancer drug paclitaxel, but its microbial biosynthesis yield is very low. In this study, we employed Yarrowia lipolytica as a microbial host to produce taxadiene. First, a "push-pull" strategy was adopted to increase taxadiene production by 234%. Then taxadiene synthase was fused with five solubilizing tags respectively, leading a maximum increase of 62.3% in taxadiene production when fused with SUMO. Subsequently, a multi-copy iterative integration method was used to further increase taxadiene titer, achieving the maximum titer of 23.7 mg/L in shake flask culture after three rounds of integration. Finally, the taxadiene titer was increased to 101.4 mg/L by optimization of the fed-batch fermentation conditions. This is the first report of taxadiene biosynthesis accomplished in Y. lipolytica, serving as a good example for the sustainable production of taxadiene and other terpenoids in this oleaginous yeast.

6.
Bioresour Bioprocess ; 10(1): 75, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-38647910

RESUMO

(+)-Neomenthylamine is an important industrial precursor used to synthesize high value-added chemicals. Here, we report a novel biocatalytic route to synthesize (+)-neomenthylamine by amination of readily available (-)-menthone substrate using ω-transaminase. By screening a panel of ω-transaminases, an ω-transaminase from Vibrio fluvialis JS17 was identified with considerable amination activity to (-)-menthone, and then characterization of enzymatic properties was conducted for the enzyme. Under optimized conditions, 10 mM (-)-menthone was transformed in a mild aqueous phase with 4.7 mM product yielded in 24 h. The biocatalytic route using inexpensive starting materials (ketone substrate and amino donor) and mild reaction conditions represents an easy and green approach for (+)-neomenthylamine synthesis. This method underscores the potential of biocatalysts in the synthesis of unnatural terpenoid amine derivatives.

7.
J Agric Food Chem ; 70(34): 10543-10551, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35997264

RESUMO

Artificial biorefinery of oleic acid into 1,10-decanedioic acid represents a revolutionizing route to the sustainable production of chemically difficult-to-make bifunctional chemicals. However, the carbon atom economy is extremely low (56%) due to the formation of unifunctional n-octanol. Here, we report a panel of recombinant Escherichia coli modules for diverse bifunctionalization, where the desired genetic parts are well distributed into different modules that can be flexibly combined in a plug-and-play manner. The designed ω-functionalizing modules could achieve ω-hydroxylation, consecutive ω-oxidation, or ω-amination of n-octanoic acid. By integrating these advanced modules with the reported oleic acid-cleaving modules, high-value C8 and C10 products, including ω-hydroxy acid, ω-amino acid, and α,ω-dicarboxylic acid, were produced with 100% carbon atom economy. These ω-functionalizing modules enabled the complete use of all of the carbon atoms from oleic acid (released from plant oil) for the green synthesis of structurally diverse bifunctional chemicals.


Assuntos
Escherichia coli , Ácido Oleico , 1-Octanol , Carbono , Ácidos Dicarboxílicos/química , Escherichia coli/genética
8.
J Agric Food Chem ; 70(19): 5860-5868, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35506591

RESUMO

Penicillium expansum, producer of a wide array of secondary metabolites, has the potential to be a source of new terpene synthases. In this work, a platform was constructed with Escherichia coli BL21(DE3) by enhancing its endogenous 2-methyl-d-erythritol-4-phosphate pathway to supply sufficient terpenoid precursors. Using this precursor-supplying platform, we discovered two sesquiterpene synthases from P. expansum: PeTS1, a new (+)-aristolochene synthase, and PeTS4, the first microbial (+)-bicyclogermacrene synthase. To enhance the sesquiterpene production by PeTS1, we employed a MBP fusion tag to improve the heterologous protein expression, resulting in the increase of aristolochene production up to 50 mg/L in a 72 h flask culture, which is the highest production reported to date. We also realized the first biosynthesis of (+)-bicyclogermacrene, achieving 188 mg/L in 72 h. This work highlights the great potential of this microbial platform for the discovery of new terpene synthases and opens new ways for the bioproduction of other valuable terpenoids.


Assuntos
Alquil e Aril Transferases , Sesquiterpenos , Alquil e Aril Transferases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Penicillium , Sesquiterpenos/metabolismo , Terpenos/metabolismo
9.
Chembiochem ; 23(9): e202200063, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35257464

RESUMO

The P450-mediated terminal hydroxylation of non-activated C-H bonds is a chemically challenging reaction. CYP153A7 monooxygenase, discovered in Sphingomonas sp. HXN200, belongs to the CYP153A subfamily and shows a pronounced terminal selectivity. Herein, we report the significantly improved terminal hydroxylation activity of CYP153A7 by redesign of the substrate binding pocket based on molecular docking of CYP153A7-C8:0 and sequence alignments. Some of the resultant single mutants were advantageous over the wild-type enzyme with higher reaction rates, achieving a complete conversion of n-octanoic acid (C8:0, 1 mM) in a shorter time period. Especially, a single-mutation variant, D258E, showed 3.8-fold higher catalytic efficiency than the wild type toward the terminal hydroxylation of medium-chain fatty acid C8:0 to the high value-added product 8-hydroxyoctanoic acid.


Assuntos
Sistema Enzimático do Citocromo P-450 , Ácidos Graxos , Domínio Catalítico , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Graxos/química , Hidroxilação , Simulação de Acoplamento Molecular , Especificidade por Substrato
10.
ChemSusChem ; 15(9): e202101741, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34519416

RESUMO

Microbial synthesis of plant-based (-)-menthol is of great interest because of its high demand (≈30 kiloton per year) as well as unique odor and cooling characteristics. However, this remains a great challenge due to the yet unfilled gap between (-)-limonene and (+)-cis-isopulegone. Herein, the first artificial and effective system was developed for (+)-cis-isopulegone biosynthesis from (-)-limonene by recruiting two bacterial enzymes to replace their inefficient counterparts from Mentha piperita, limonene-3-hydroxylase, and isopiperitenol dehydrogenase. A cofactor self-regenerative recombinant Escherichia coli strain was constructed by introducing a formate dehydrogenase for nicotinamide adenine dinucleotide phosphate (NADPH) regeneration and an engineered microbial isopiperitenol dehydrogenase. The production of (+)-cis-isopulegone (up to 281.2 mg L-1 ) was improved by 36 times compared with that of the initial strain. This work lays a reliable foundation for the microbial synthesis of (-)-menthol.


Assuntos
Mentha piperita , Mentol , Monoterpenos Cicloexânicos , Limoneno
11.
Bioresour Bioprocess ; 9(1): 88, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-38647597

RESUMO

BACKGROUND: (-)-Limonene, one of cyclic monoterpenes, is an important renewable compound used widely as a key building block for the synthesis of new biologically active molecules and fine chemicals. (-)-Perillamine, as derived from (-)-limonene, is a highly useful synthon for constructing more complicated and functionally relevant chemicals. AIM: We aimed to report a more sustainable and more efficient method for the regiospecific C-H amination of (-)-limonene into (-)-perillamine. RESULTS: Here, we report an artificial penta-enzymatic cascade system for the transformation of the cheap and easily available (-)-limonene into (-)-perillamine for the first time. This system is composed of cytochrome P450 monooxygenase, alcohol dehydrogenase and w-transaminase for the main reactions, as well as formate dehydrogenase and NADH oxidase for cofactor recycling. After optimization of the multi-enzymatic cascade system, 10 mM (-)-limonene was smoothly converted into 5.4 mM (-)-perillamine in a one-pot two-step biotransformation, indicating the feasibility of multi-enzymatic C7-regiospecific amination of the inert C-H bond of (-)-limonene. This method represents a concise and efficient route for the biocatalytic synthesis of derivatives from similar natural products.

12.
Bioresour Bioprocess ; 9(1): 26, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38647612

RESUMO

BACKGROUND: ß-Nicotinamide mononucleotide (NMN) is the direct precursor of nicotinamide coenzymes such as NAD+ and NADP+, which are widely applied in industrial biocatalysis especially involving cofactor-dependent oxidoreductases. Moreover, NMN is a promising candidate for medical uses since it is considered to be beneficial for improving health of aged people who usually suffer from an insufficient level of NAD+. To date, various methods have been developed for the synthesis of NMN. Chemical phosphorylation of nicotinamide riboside (NR) to NMN depends on excessive phosphine oxychloride and delicate temperature control, while fermentation of NMN is limited by low product titers, making it unsuitable for industrial-scale NMN production. As a result, the more efficient synthesis process of NMN is still challenging. AIM: This work attempted to construct an eco-friendly and cost-effective biocatalytic process for transforming the chemically synthesized NR into the highly value-added NMN. RESULTS: A new nicotinamide riboside kinase (Klm-NRK) was identified from Kluyveromyces marxianus. The specific activity of purified Klm-NRK was 7.9 U·mg-1 protein, ranking the highest record among the reported NRKs. The optimal pH of Klm-NRK was 7.0 in potassium phosphate buffer. The purified Klm-NRK retained a half activity after 7.29 h at 50 °C. The catalytic efficiencies (kcat/KM) toward ATP and nicotinamide riboside (NR) were 57.4 s-1·mM-1 and 84.4 s-1·mM-1, respectively. In the presence of an external ATP regeneration system (AcK/AcP), as much as 100 g·L-1 of NR could be completely phosphorylated to NMN in 8 h with Klm-NRK, achieving a molar isolation yield of 84.2% and a space-time yield of 281 g·L-1·day-1. These inspiring results indicated that Klm-NRK is a promising biocatalyst which provides an efficient approach for the bio-manufacturing of NMN in a high titer.

13.
Chembiochem ; 22(7): 1190-1195, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33205522

RESUMO

Baeyer-Villiger monooxygenases (BVMOs) are remarkable biocatalysts for the Baeyer-Villiger oxidation of ketones to generate esters or lactones. The regioselectivity of BVMOs is essential for determining the ratio of the two regioisomeric products ("normal" and "abnormal") when catalyzing asymmetric ketone substrates. Starting from a known normal-preferring BVMO sequence from Pseudomonas putida KT2440 (PpBVMO), a novel BVMO from Gordonia sihwensis (GsBVMO) with higher normal regioselectivity (up to 97/3) was identified. Furthermore, protein engineering increased the specificity constant (kcat /KM ) 8.9-fold to 484 s-1 mM-1 for 10-ketostearic acid derived from oleic acid. Consequently, by using the variant GsBVMOC308L as an efficient biocatalyst, 10-ketostearic acid was efficiently transformed into 9-(nonanoyloxy)nonanoic acid, with a space-time yield of 60.5 g L-1 d-1 . This study showed that the mutant with higher regioselectivity and catalytic efficiency could be applied to prepare medium-chain ω-hydroxy fatty acids through biotransformation of long-chain aliphatic keto acids derived from renewable plant oils.


Assuntos
Oxigenases de Função Mista/metabolismo , Engenharia de Proteínas , Actinobacteria/enzimologia , Biocatálise , Oxigenases de Função Mista/genética , Mutagênese Sítio-Dirigida , Ácido Oleico/química , Ácido Oleico/metabolismo , Oxirredução , Pseudomonas putida/enzimologia , Ácidos Esteáricos/química , Ácidos Esteáricos/metabolismo , Estereoisomerismo , Especificidade por Substrato
14.
Chembiochem ; 21(18): 2680-2688, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32324965

RESUMO

Glucose dehydrogenase (GDH) is a general tool for driving nicotinamide (NAD(P)H) regeneration in synthetic biochemistry. An increasing number of synthetic bioreactions are carried out in media containing high amounts of organic cosolvents or hydrophobic substrates/products, which often denature native enzymes, including those for cofactor regeneration. In this work, we attempted to improve the chemical stability of Bacillus megaterium GDH (BmGDHM0 ) in the presence of large amounts of 1-phenylethanol by directed evolution. Among the resulting mutants, BmGDHM6 (Q252L/E170K/S100P/K166R/V72I/K137R) exhibited a 9.2-fold increase in tolerance against 10 % (v/v) 1-phenylethanol. Moreover, BmGDHM6 was also more stable than BmGDHM0 when exposed to hydrophobic and enzyme-inactivating compounds such as acetophenone, ethyl 2-oxo-4-phenylbutyrate, and ethyl (R)-2-hydroxy-4-phenylbutyrate. Coupled with a Candida glabrata carbonyl reductase, BmGDHM6 was successfully used for the asymmetric reduction of deactivating ethyl 2-oxo-4-phenylbutyrate with total turnover number of 1800 for the nicotinamide cofactor, thus making it attractive for commercial application. Overall, the evolution of chemically robust GDH facilitates its wider use as a general tool for NAD(P)H regeneration in biocatalysis.


Assuntos
Glucose 1-Desidrogenase/metabolismo , Niacinamida/metabolismo , Bacillus megaterium/enzimologia , Álcoois Benzílicos/química , Álcoois Benzílicos/metabolismo , Glucose 1-Desidrogenase/química , Glucose 1-Desidrogenase/genética , Estrutura Molecular , Mutação , Niacinamida/química , Oxirredução , Fenilbutiratos/química , Fenilbutiratos/metabolismo
15.
Appl Environ Microbiol ; 85(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30926727

RESUMO

Baeyer-Villiger monooxygenases (BVMOs) are an emerging class of promising biocatalysts for the oxidation of ketones to prepare corresponding esters or lactones. Although many BVMOs have been reported, the development of highly efficient enzymes for use in industrial applications is desirable. In this work, we identified a BVMO from Rhodococcus pyridinivorans (BVMORp) with a high affinity toward aliphatic methyl ketones (Km < 3.0 µM). The enzyme was highly soluble and relatively stable, with a half-life of 23 h at 30°C and pH 7.5. The most effective substrate discovered so far is 2-hexanone (kcat = 2.1 s-1; Km = 1.5 µM). Furthermore, BVMORp exhibited excellent regioselectivity toward most aliphatic ketones, preferentially forming typical (i.e., normal) products. Using the newly identified BVMORp as the catalyst, a high concentration (26.0 g/liter; 200 mM) of methyl levulinate was completely converted to methyl 3-acetoxypropionate after 4 h, with a space-time yield of 5.4 g liter-1 h-1 Thus, BVMORp is a promising biocatalyst for the synthesis of 3-hydroxypropionate from readily available biobased levulinate to replace the conventional fermentation.IMPORTANCE BVMOs are emerging as a green alternative to traditional oxidants in the BV oxidation of ketones. Although many BVMOs are discovered and used in organic synthesis, few are really applied in industry, especially in the case of aliphatic ketones. Herein, a highly soluble and relatively stable monooxygenase from Rhodococcus pyridinivorans (BVMORp) was identified with high activity and excellent regioselectivity toward most aliphatic ketones. BVMORp possesses unusually high substrate loading during the catalysis of the oxidation of biobased methyl levulinate to 3-hydroxypropionic acid derivatives. This study indicates that the synthesis of 3-hydroxypropionate from readily available biobased levulinate by BVMORp-catalyzed oxidation holds great promise to replace traditional fermentation.


Assuntos
Cetoácidos/metabolismo , Cetonas/metabolismo , Oxigenases de Função Mista/metabolismo , Rhodococcus/enzimologia , Rhodococcus/metabolismo , Biocatálise , Biotransformação , Clonagem Molecular , Estabilidade Enzimática , Ésteres/metabolismo , Fermentação , Concentração de Íons de Hidrogênio , Cetonas/química , Cinética , Ácidos Levulínicos/metabolismo , Metil n-Butil Cetona/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/isolamento & purificação , Oxirredução , Rhodococcus/genética , Rhodococcus/crescimento & desenvolvimento , Especificidade por Substrato , Temperatura
16.
Chembiochem ; 19(19): 2049-2054, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30025196

RESUMO

Baeyer-Villiger monooxygenases (BVMOs) are versatile biocatalysts in organic synthesis that can generate esters or lactones by inserting a single oxygen atom adjacent to a carbonyl moiety. The regioselectivity of BVMOs is essential in determining the ratio of two regioisomers for converting asymmetric ketones. Herein, we report a novel BVMO from Pseudomonas aeruginosa (PaBVMO); this has been exploited for the direct synthesis of medium-chain α,ω-dicarboxylic acids through a Baeyer-Villiger oxidation-hydrolysis cascade. PaBVMO displayed the highest abnormal regioselectivity toward a variety of long-chain aliphatic keto acids (C16 -C20 ) to date, affording dicarboxylic monoesters with a ratio of up to 95 %. Upon chemical hydrolysis, α,ω-dicarboxylic acids and fatty alcohols are readily obtained without further treatment; this significantly reduces the synthetic steps of α,ω-dicarboxylic acids from renewable oils and fats.


Assuntos
Ácidos Carboxílicos/metabolismo , Oxigenases de Função Mista , Pseudomonas aeruginosa/metabolismo , Biocatálise , Ácidos Dicarboxílicos/metabolismo , Ésteres/metabolismo , Hidrólise , Isomerismo , Cetoácidos/metabolismo , Cetonas/metabolismo , Lactonas/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Oxirredução , Especificidade por Substrato
17.
Chembiochem ; 19(4): 347-353, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28926166

RESUMO

Ursodeoxycholic acid (UDCA) is an effective drug for the treatment of hepatitis. In this study, 7α-hydroxysteroid dehydrogenase (7α-HSDH) and lactate dehydrogenase (LDH), as well as 7ß-hydroxysteroid dehydrogenase (7ß-HSDH) and glucose dehydrogenase (GDH), were co-immobilized onto an epoxy-functionalized resin (ES-103) to catalyze the synthesis of UDCA from chenodeoxycholic acid (CDCA). Through optimizing the immobilization pH, time, and loading ratio of enzymes to resin, the specific activities of immobilized LDH-7αHSDH@ES-103 and 7ßHSDH-GDH@ES-103 were 43.2 and 25.8 U g-1 , respectively, which were 12- and 516-fold higher than that under the initial immobilization conditions. Continuous production of UDCA from CDCA was subsequently achieved by using immobilized LDH-7αHSDH@ES-103 and 7ßHSDH-GDH@ES-103 in two serial packed-bed reactors. The yield of UDCA reached nearly 100 % and lasted for at least 12 h in the packed-bed reactors, which was superior to that of the batchwise reaction. This efficient continuous approach developed herein might provide a feasible route for large-scale biotransformation of CDCA into UDCA.


Assuntos
Reatores Biológicos , Enzimas Imobilizadas/metabolismo , Glucose 1-Desidrogenase/metabolismo , Hidroxiesteroide Desidrogenases/metabolismo , L-Lactato Desidrogenase/metabolismo , Ácido Ursodesoxicólico/biossíntese , Biotransformação , Concentração de Íons de Hidrogênio , Fatores de Tempo , Ácido Ursodesoxicólico/química
18.
J Agric Food Chem ; 65(41): 9094-9100, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28949531

RESUMO

The biodegradation of pesticides by organophosphorus hydrolases (OPHs) requires an efficient enzyme production technology in industry. Herein, a Pichia pastoris strain was constructed for the extracellular expression of PoOPHM9, an engineered malathion-degrading enzyme. After optimization, the maximum titer and yield of fermentation reached 50.8 kU/L and 4.1 gprotein/L after 3 days, with the highest space-time yield (STY) reported so far, 640 U L-1 h-1. PoOPHM9 displayed its high activity and stability in the presence of 0.1% (w/w) plant-derived detergent. Only 0.04 mg/mL enzyme could completely remove 0.15 mM malathion in aqueous solution within 20 min. Furthermore, 12 µmol malathion on apples and cucumbers surfaces was completely removed by 0.05 mg/mL PoOPHM9 in tap water after 35 min washing. The efficient production of the highly active PoOPHM9 has cleared a major barrier to biodegradation of pesticide residues in food industry.


Assuntos
Proteínas Fúngicas/química , Hidrolases/química , Malation/química , Metanol/química , Praguicidas/química , Pichia/genética , Pichia/metabolismo , Biocatálise , Biodegradação Ambiental , Cucumis sativus/química , Meios de Cultura/metabolismo , Detergentes/química , Detergentes/metabolismo , Estabilidade Enzimática , Fermentação , Contaminação de Alimentos/análise , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Cinética , Malation/metabolismo , Malus/química , Metanol/metabolismo , Organofosfatos/química , Organofosfatos/metabolismo , Praguicidas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Appl Biochem Biotechnol ; 183(2): 543-554, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28766104

RESUMO

The lipase isolated from Serratia marcescens (LipA) is a useful biocatalyst for kinetic resolution of a pharmaceutically relevant epoxyester, (±)-3-(4'-methoxyphenyl) glycidic acid methyl ester [(±)-MPGM], to afford optically pure (-)-MPGM, a key intermediate for the synthesis of diltiazem hydrochloride. Two mutants, LipAL315S and LipAS271F, were identified from the combinatorial saturation mutation library of 14 amino acid residues lining the substrate-binding pocket. LipAL315S, LipAS271F, and their combination LipAL315S/S271F showed 2.6-, 2.2-, and 4.6-fold improvements in their specific activities towards para-nitrophenyl butyrate (pNPB), respectively. Among these positive mutants, LipAS271F displayed a 3.5-fold higher specific activity towards the pharmaco substrate (±)-MPGM. Kinetic study showed that the improvement in catalytic efficiency of LipAS271F against (±)-MPGM was mainly resulted from the enhanced affinity between substrate and enzyme, as indicated by the decrease of K m. Furthermore, to address the insoluble expression issue in Escherichia coli, the homologous expression of LipA gene in S. marcescens was achieved by introducing it into an expression vector pUC18, resulting in ca. 20-fold higher lipase production. The significantly improved volumeric production and specific activity of S. marcescens lipase make it very attractive as a new-generation biocatalyst for more efficient and economical manufacturing of (-)-MPGM.


Assuntos
Substituição de Aminoácidos , Proteínas de Bactérias , Expressão Gênica , Lipase , Serratia marcescens , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Lipase/biossíntese , Lipase/genética , Serratia marcescens/enzimologia , Serratia marcescens/genética
20.
Bioresour Bioprocess ; 4(1): 37, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28845382

RESUMO

OBJECTIVES: To improve the fermentation production of transglutaminase (TGase) from Streptomyces mobaraensis for applications in the food industry, the atmospheric and room-temperature plasma (ARTP) mutagenesis was applied to breed S. mobaraensis mutants with increased TGase production. RESULTS: After eight rounds of iterative ARTP mutagenesis, four genetically stable mutants, Sm5-V1, Sm6-V13, Sm2-V10, and Sm7-V12, were identified, which showed increased TGase production by 27, 24, 24, and 19%, respectively. The best mutant Sm5-V1 exhibited a maximum TGase activity of 5.85 U/mL during flask fermentation. Compared to the wild-type strain, the transcription levels of the zymogen TGase genes in the mutants increased significantly as indicated by quantitative real-time PCR, while the gene nucleotide sequences of the mutants did not change at all. It was shown that the overexpression of TGase zymogen gene in the mutants contributes to the increase in TGase production. CONCLUSIONS: ARTP is a potentially efficient tool for microbial mutation breeding to bring some significant changes required for the industrial applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA